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OPTIMUM CLIMB AND DESCENT TRAJECTORIES FOR AIRLINE MISSIONS

Heinz Erzberger
Research Scientist
Ames Research Center, NASA, Moffett Field, California 94035

SUMMARY

The characteristics of optimum fixed-range trajectories whose structure is constrained to climb, steady
cruise, and descent segments are derived by application of optimal control theory. The performance function
consists of the sum of fuel and time costs, referred to as direct operating cost (DOC). The state variable is
range to go and the independent variable is energy. In this formulation a cruise segment always occurs at the
optimum cruise energy for sufficiently large range. At short ranges (400 n. mi. and less), a cruise segment
may also occur below the optimum cruise energy. The existence of such a cruise segment depends primarily on
the fuel flow vs thrust characteristics and on thrust constraints. If thrust is a free control variable along
with airspeed, it is shown that such cruise segments will not generally occur. If thrust is constrained to
some maximum value in climb and to some minimum in descent, such cruise segments generally will occur. The
algorithm has been implemented in a computer program that can be incorporated in an airline flight planning
system or can serve as a basis for an onboard implementation. The various features of the program are
described and the characteristics of the optimun trajectories are illustrated with a set of example trajec-
tories for an aircraft model representative of the Boeing 727-100.

NOMENCLATURE
c fuel cost factor, dollars/kg (dollars/ib) T thrust, kg (1b)
f
sy time cost factor, dollars/hr Tup’Tdn climb and descent thrusts, respectively
D drag force t time
DV,D 2 first and second partial deri?atives of tc time at end of climb
v drag with respect to airspeed
ty time at start of descent
dC cruise distance
ts total mission time
df desired distance to fly
v true airspeed
d ’ddn total climb and descent distances,
up respectively Vc cruise speed
£ total aircraft energy in units of altitude vup’vdn climb and descent airspeeds
Ec cruise or maximum energy Yy, wind speed along flightpath
£ optimum cruise energy Vw ’Vw wind speeds in climb and descent segments,
copt up dn respectively, functions of altitude
Ei,Ef initial and final energy W aircraft weight in kg (1b)
2 rate of change in energy wf total mission fuel, kg (1b)
9 acceleration of gravity H1 initial aircraft weight, kg (1b)
H Hamiltonian, dollars per unit of energy wref reference weight in climb fuel relation
h altitude, m (ft) We fuel flow rate, kg/hr (1b/hr)
Iup’Idn components of the Hamiltonian « distance flown, n. mi.
J value of performance function, . di s nning variables
dollars/kg (dollars/1b) Xup**dn ¢limb and descent distances, ru ]
defining direction of control
KIAS indicated airspeed, knots 8 g::iﬁigggiogsln1ng !
Kup’Kdn ?2er;nds under the minimization operatar v f1ightpath angle, radian
i d t flightpath angles, respec-
K, constant in climb fuel relation Yup*Ydn :};Z?y?nﬂadﬁzﬁen 1ghtp gle
L 1ift force AR length of control perturbation
P integrand of cost function or cost per AT AV thrust and speed perturbations relative to
unit time cruise conditions
Sec thrust specific fuel consumption per hr *(Ec) cruise cost at cruise energy E,

dollars/n. mi.

S nth partial derivatives of S with
Fc(-)n respect to (-) FC

Index categories: Flight Operations; Guidance and Control; Navigation; Communication; Traffic Control.
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w throttle setting A cruise cost per unit distance

"o dn throttle settings in climb and descent, Aopt optimum cruise cost over all energies,
P respectively per unit distance

¥ costate variable

INTRODUCTION

The continuing rise in airline operating costs due to escalating fuel prices and other inflationary fac-
tors has stimulated interest in techniques for trajectory optimization. Recent work has focused on the deri-
vation of simplified algorithms for computing trajectories with specified range. Such an algorithm was
described in Ref. 1. The trajectories calculated by this algorithm, unlike those obtained by classical
performance optimization, minimize an integral performance measure such as total mission fuel cost.

Another problem that has received attention recently concerns the optimality of steady-state cruise
flight. Steady-state cruise is generally not optimum for minimum fuel performance (Ref. 2), but the perfor-
mance penalty of steady-state cruise is unknown because the actual nonsteady or cyclic optimum cruise has not
been computed to date. However, if the steady-state cruise satisfies first-order necessary conditions, Speyer
(Ref. 2) shows, in an example, that the performance improvement of a particular {though nonoptimum) cyclic
cruise is about 0.1%. This improvement, if representative of the optimum cyclic cruise, is not economically
significant. Nevertheless, the determination of the optimum cyclic cruise poses an interesting and unsolved
problem.

Even if economically significant, cyclic cruise could not be used in airline operation because it is
incompatible with existing air traffic control procedures, disconcerts passengers, and decreases engine life.
Optimum trajectories, to be compatible with typical airline practice, should consist of a climbout, a steady-
state cruise, and a descent. Thus, at least for commercial airline applications, the optimum trajectory must
be selected from a set of trajectories that is limited a priori to such types.

A formulation of the trajectory optimization problem that constrains the admissible trajectories to those
containing climb, steady cruise, and descent was given in Ref. 1. In this formulation, energy height was used
as the independent or timelike variable in climb and descent, thus forcing energy to change monotonically in
these segments. It was shown that the use of energy as the independent variable eliminates the integration of
a separate adjoint differential equation, thus simplifying the numerical solution of the optimal control prob-
lem. Therefore, this formulation is also adopted here.

An evaluation of the constrained optimum trajectories by airline operators indicated an interest in the
additional constraint of setting the thrust to some maximum during climb and to idle during descent to reduce
pilot workload of flying the trajectories. An examination of this procedure raised the following juestions
that are investigated here. How do the constraints on thrust and, more generally, the aerodynamic and propul-
sion characteristics affect the structure of the trajectories? Under what condition is the constrained thrust
procedure optimum? What performance penalty is incurred by the constraint on thrust?

The avionics and aircraft industry is currently developing onboard performance computer systems to assist
the flight crew in minimizing fuel consumption and operating costs. Because of its modest computational
requirements, the algorithm described herein can be implemented in an onboard computer. This paper briefly
describes a computer implementation of the algorithm and also discusses the characteristics of several optimum
trajectories computed for the Boeing 727-100 aircraft.

OPTIMAL CONTROL FORMULATION

As stated in the Introduction, we assume at the outset that the optimum trajectories have the structure
shown in Fig. 1. This structure consists of climb, cruise, and descent segments, with the aircraft energy
increasing monotonically in climb and decreasing monotonically in descent. Neglecting flightpath-angle
dynamics and weight loss due to fuel burn, the point mass equations of motion for flight in the vertical plane
are

(1/9)(dv/dt) = [(T - D)/W] - sin v (1)
dh/dt = V sin v (2)
dx/dt = V.cos y +V =V +V (3)

with the constraint L = W cos y. The along-track wind component V_ may be a function of altitude, but
accelerations due to wind shears as well as the vertical wind compongnt can be neglected in this analysis.

In airplanes, unlike rockets, the rate of change of weight due to fuel burn introduces negligible dynamic
effects in the trajectory optimization. Nevertheless, the effect of weight loss on a trajectory is important
but can be accounted for without adding another state variable by techniques described in the section on
computer implementation. If energy is defined as

E=h+ (1/2g)v2 (4)
then the familiar relation for the rate of change in energy is obtained by differentiating Eq. (4) with res-
pect to time and substituting the right-hand sides of Eqs. (1) and (2) in place of dV/dt and dh/dt,
respectively:

E = dE/dt = [{T - d)VI/W (5)
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The cost function to be minimized is chosen as the direct operating cost of the mission and consists of
the sum of the fuel cost and the time cost:

J = cele + ooyt (6)
where c; and cy are the unit costs of fuel and time, respectively. Setting c¢ = 0 results in the familiar
minimum fuel performance function. In integral fcrm, the cost function becomes

tf . tf
3 j; (Wecp + c,)dt = J; P dt (7)

It is assumed that the time to fly, tf, is a free variable, but the distance to fly is a specified quan-
tity d¢. Following the formulation in Ref. 1, we now write the total mission cost as the sum of the costs
for the three segments of the assumed trajectory (illustrated in Fig. 1);

tc J-tf
J = J; P dt + (df - dup - ddn)x + A P dt (8)
N - J\—i.v—/
climb cruise descent
cost cost cost

where 1 designates the cost of cruising at a given energy E.. Next, we transform the integral cost terms
in £q. (8) by changing the independent variable from time to energy, using the transformation dt = dE/E:

3 E

- c cl. c £l

J = J;. (P/E|f,g)dE + (&g - dyp - dgo) + J;f (P/ 1 o)dE (9)
1

where Ej and Ef are the given initial climb and final descent energies, respectively. The transformation
uses the assumption that the energy changes monotonically in climb and descent. This places strict inequality
constraints on £, as shown in Eq. (9). Also in Eq. (9), the integration limits have been reversed in the
descent cost term. In this formulation the cost function is of mixed form, containing two integral cost terms
and a terminal cost term contributed by the cruise segment.

With the change in independent variable from time to energy, the state equation (Eq. (5)) is eliminated,
leaving Eq. (3) as the only state equation. Furthermore, we note that the performance function (Eq. (9))
depends on the distance state x only through the sum of the climb and descent distances dup + dgp- There-
fore, the state equation for the distance is rewritten in terms of this sum as:

dlxyp * *xgq)/dE = (yup + kup)/s £s0 * (?dn + vwdn)/‘E

Here the transformation dt = dE/E was used again. Also, Eq. (10) provides for independence in the choice of
climb and descent speeds V,p and Vgn and the wind velocities un and den, Wind velocities in climb and

descent are allowed to be independent of each other; generally, different wind conditions will prevail in
physically different locations of climb and descent. The wind velocities can also be altitude-dependent. The
effect of altitude-dependent winds on the optimum trajectories is discussed in Ref. 3.

(10)

E<D

Necessary conditions for the minimization of Eq. (9), subject to the state equation (Eq. (10)) are
obtained by application of optimum control theory (see, e.g., Ref. 4, p. 71). Then the following relations
are obtained for the Hamiltonian and costate equations, respectively:

v . +V V,. +V

. up W dn W
H= min (3) + (-fl) + | — P — dn (1)
vup’vdn E/ks0 IEl E<0 ElE)O IEIE<0
Tup’"dn
dy/dE = -[aH/a(x,, + Xga)1 = 0 (12)

The right-hand side of the Hamiltonian equation is minimized with respect to two pairs of control vari-
ables, one pair applicable to climb (Vyp and myp), the other pair to descent (Vdn and ndp). Since each term
under the minimization operator in Eq. %11) contains only one of the two pairs of control variables, the
minimization simplifies into two independent minimizations, one involving climb controls, the other, descent
controls. Also, since the right-hand side of the costate equation (Eq. ?12)) is zero, ¢ 1s constant.

TRANSVERSALITY CONDITIONS

The transversality conditions are additional necessary conditions that depend on the end-point con-
straints of state variables (Ref. 4). The basic constraint in this problem is that the range of the trajec-
tory be df. However, df 1is a parameter in the transformed cost function, Eq. (9), and not a state variable.
The final value of the state variable dyp + ddn 1is, in this formulation, subject only to the inequality
constraint dyp + dgn < df. This constraint is, of course, necessary for a physically meaningful result.
This inequality constraint can be handled by solving two optimization problems, one completely free
(dup *+ ddn < df), the other constrained (dup + ¢dn = df), and then choosing the trajectory with the Towest
cost. Physicafly. the comparison is between a trajectory with a cruise segment and one without a cruise
segment. Considering first the free terminal state case, dy, + dq, < df, we obtain the following relation
for the final value of the costate ¢:
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a(df " Xyp " xdn)x‘

Q(Xup r an) = =) (]3)

w(Ec) = l
E=E¢+Xyp=dup *dn=ddn
This is the transversality condition for the free final state problem with terminal cost (Ref. 4). It shows

that the constant costate value is the negative of the cruise cost.

Next, consider the case of no cruise segment. Then, the middle term of Eq. (9) drops out and the perfor-
mance function contains only the integral cost terms. This is the case of the specified final state
df = dyp + ddn; the corresponding transversality condition yields w(Ec) = y¢. In practice it is not necessary
to compute the constrained terminal state trajectory if a valid free terminal state trajectory exists, i.e.,
one for which d¢ > dup + ddn, since the addition of a terminal constraint can only increase the cost of the
trajectory. Therefore, this case is not considered further here.

In both cases the choice of costate determines a particular range. Since the functional relationship
between these variables cannot be determined in closed form, it is necessary to iterate on the costate value
to achieve a specified range ds.

The last necessary condition applicable to this formulation is obtained by making use of the fact that

the final value of the timelike independent variable E is free. Its final value is the upper limit of
integration Ec in Eq. (9). Application of results in Ref. 4 provides the following condition:

(H + [olid; - dy - ddn)A(E)]/aEI)E=E =0 (14)
. C

which, when evaluated and simplified, becomes

[H + [dc(dA/dE)]]E=E =0 (15)
[

where dc is the cruise distance.

Condition (15) has the following physical interpretation. The value of the Hamiltonian H evaluated at
cruise energy E. is (after substituting Eq. (13) into (11)) the minimum increment in the sum of climb cost
and descent cost to make a unit increment in cruise energy. The product dc(dA/dE)E=E is the increment in

. . . . . . c ; .
cruise cost resulting from a unit change in cruise energy. Condition (15) requires thé optimum trajectory to
be such that the sum of these two increments be zero for a given cruise distance d. and cruise energy E..

DEPENDENCE OF OPTIMUM TRAJECTORIES ON RANGE

Equation (15), together with knowledge of the salient characteristics of the cruise cost A and the
Hamiltonian H, can be used to determine the structural dependence of the optimum trajectories on range.

Cruise cost at a cruise energy E. and cruise speed V. 1is computed from the relation

MEVE) = [P(TLELV)I/(V + V) with constraines (12 ) (16)
where the denominator is the ground speed in the flightpath direction. Examination of the term containing A
in the relation for the performance function (9) shows that the value for X should be as small as possible
at each cruise energy to minimize the total cost J. Therefore, the cruise-speed dependence of A is
eliminated by minimizing the right side of Eq. (16) with respect to V.:

A(Ec) = min P(T,EC,VC)/(Vc + Vw) (17)
)
c

In this paper, A and V¢ are always assumed to be the optimum cruise cost and cruise speed, respectively, at
a particular cruise energy E..

Except in high wind shear, the cruise cost as a function of cruise energy exhibits the roughly parabolic
shape shown in Fig. 2. For subsonic transport aircraft, the minimum of the cruise cost with respect to energy
occurs close to the maximum energy boundary. This characteristic of the cruise cost prevails for essentially
all values of the performance function parameters cg¢ and ct. The quantities defining the optimum cruise con-
ditions are Ecopt and Aopt‘ In Eq. (15), the derivative of the cruise cost function multiplies the cruise

distance. Except under extreme wind shear conditions, the derivative is monotonic and crosses the zero axis
at E. = E .
c copt
By distributing the minimization operator in Eq. (11) and substituting Eq. (13) in Eq. (11), H can be
decomposed into climb and descent components as follows:

HLEA(E.)] = Lup * ldn (18)
where
- p -
. P A(v‘le + kup) - Py, t v,,,dn) .
Iyp = min _ v Ly, = min - (19)
Vup Eleso Van | [Elecg
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In the preceding section, the Hamiltonian, evaluated at E = Ec, was interpreted as the cost penalty to
achieve a unit increase in cruise energy. Extensive numerical studies of Eq. (18) for several comprehensive
models of subsonic turbofan aircraft show H[E-,A(E¢)] > 0 for E¢ < Ecopt' Moreover, the minimum cost

penalty for increasing energy I,, 1is always positive and that for decreasing Ij, 1is negative, but the sum
has never been found negative for models of currently used turbofans. While these characteristics have been
established for several aircraft models, they are not intended to imply a generalization to all aircraft since
no physical laws prevent H from being negative.

Consider first the case where H[E.,A(Ec)] > 0. Then Eq. (15) can be solved for the cruise distance d¢:

do = HIE MEQ)/ (/e (20)

Since d)/dE << 0, but approaches zero as E¢ ~ Eco . the cruise distance must increase without limit as
Ec - Ecopt' Our numerical studies have shown that the value of H tends to decrease as E. increases, but

not enough to change this trend. Figure 3 shows the resulting family of trajectories, assuming H> 0 for
all ‘'values of Ec. In this case, interestingly, nonzero cruise segments occur at short ranges and at energies
below the optimum cruise energy Ecopt' Optimum cruise is approached asymptotically at long range.

Consider next the case where H[Ec,A(Ec)] = 0. Then dr = 0, i.e., no cruise segment is present for
dr/dE < 0. However, Eq. (15) shows that d can be nonzero da/dE = 0. This implies that, for H = 0,

cruise flight is optimum only at the optimum cruise energy E¢ t Figure 4 shows the family of trajectories
for this case. op

THRUST OPTIMIZATION FOR MINIMUM FUEL TRAJECTORIES

Evaluation of the Hamiltonian equation would be simplified if one of the two pairs of control variables,
airspeed or thrust, could somehow be eliminated a priori from the minimization. Since the pair of throttle
settings, myp and mdn, is thought to be near its limit, we shall look for conditions where extreme settings of
the throttle are optimum. The remainder of this paper examines only the minimum fuel case ¢5 = 1 and ¢y = 0,
with winds set to zero to simplify the derivation. However, the results can be extended to the more general
cost function.

For minimum fuel performance, the two terms in the Hamiltonian Eq. (19) become

Iup = . mic Kup s Idn = . mic Kdn (21a)
up’up dn’"dn
where
K = [:f ~ MWyp DKy - [:f _qudn/w (21b)
up ~ |{T - D)V /W ’ n - - d
up" T ()0 T (r gy )<D

. An accurate model for thrust and fuel flow generally includes the functional dependencies, T{=,V,h) and
Wg(w,V,h). In addition, these functions must be corrected for nonstandard temperatures and bleed losses.

In previous work on aircraft trajectory optimization (Ref. 5), a simpler model for fuel flow and thrust
was used:
wf = TSFC(V,h) 3

(V,A) < T<T

oy (Vo) (22)

Tm1n
The critical assumption in Eq. (22) is independence of the specific fuel consumption Spc from thrust.

The virtue of this model 1ies in the insight it yields into the minimum fuel problem. If Eq. (22) is substi-
tuted into Eqs. (21b), one obtains

S |:Tup - (VSFC)Vup:| 2 S Tan - DSec)Van (23)
up  V T, -D ’ dn =V [T,. - D]
Top? dn dn T, D

up up

For any fixed values of Vyp or Vdn, the operand functions for the minimization of Kyp and Kdn are
hyperbolas with poles at T = D. The numerator zero must be to the left of the pole on the thrust axis for
energies less than cruise energy. Figure 5 is a typical plot of these functions. Clearly, maximum thrust
minimizes Kyp and idie thrust minimizes Kdn for any E < E¢, proving that the Timiting values of thrust
are optimum for this propulsion model throughout the climb and descent trajectories. This result also implies
that the departure from the extreme thrust values found for the more general propulsion model is directly
attributable to the nonlinear dependence of fuel flow on thrust. Conversely, the need for throttle setting
optimization can be determined a priori from the fuel flow vs thrust dependence for a particular engine. Such
data are found in the engine manufacturer's performance handbook.

EVALUATION OF HAMILTONIAN AT CRUISE

We have seen in a preceding section that the value of the Hamiltonian computed at cruise energy E¢
determines the structure of the trajectories near cruise. Here we shall relate the existence of cruise below
to specific engine and aerodynamic model parameters by substituting truncated Taylor series expansions

of fuel flow and drag as functions of airspeed and thrust into the expression for the Hamiltonian. The loca-
tion of the minimum with respect to the controls as well as the value of H can then be determined as func-
tions of the Taylor series coefficients at E = E.
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How should one pick the point in the control space about which to make the expansion? Computational
experience in Refs. 1 and 3 has shown that the minimum is in the neighborhood of the optimum cruise speed and
throttle setting, corresponding to the given cruise energy. This suggests that the cruise controls should be
picked for the expansion point.

The fuel flow and drag functions expanded to second order about the cruise controls T =T,V =V are

’ o e
. - e ‘f'
Py .._‘.—“4.‘5’!-__‘..“_.-—.—“'_#

We =T Spe + (TcSFC + SFC\ T + T Sge av + (1/2) <ZSFC + TSee ) INK
T / v T T
2 i -
+ (TCSFCTV + SFCV)AV aT + (1/2)TCSchz AVZ + higher-order terms (24)
D= D(Vc’Ec) + Dv AV + (]/Z)sz AVZ + higher-order terms (25)

The subscripts to Spe and D designate the partial derivatives with respect to the subscripted variable. .
Note that the expansion allows for a general fuel flow model in which specific fuel consumption can be thrust- '
dependent.

Before substituting Eqs. (24) and (25) into the expression for H, we observe that H is singular at
cruise with T = T. and V = V¢, because both numerator and denominator are identically zero at that point.
Figure 6 plots the loci of the numerator and denominator zeros of Kyp and Kgn 1in the control space at
E = Ec. It is proved in the Appendix that the locus of numerator zeros is tangent to the locus of denominator
zeros at the optimum cruise controls. For E < E., the two loci have no points in common. The two loci can be
tangent but cannot cross since, otherwise, controls would exist that would make the Hamiltonian infinitely
negative, a result ruled out as physically meaningless.

Upon substituting Eqs. (24) and (25) into (21) using the tangency condition (A4) derived in the Appendix,
the following expressions for Kup and Kgn at cruise energy are obtained:

{
(TCSFCT + SFC)AT - (PVSFC + TCSFCTDV)AV

+'(1/2)(2s + TS >AT2 + (T S +5 )AV aT
FCy © 'cFlya cFCy — UFCy

2
K + (1/2)TCSFC ) avY
up v
or = P 1 (26)
) - _ 2
Kdn c |aT Dv av (1/2)DV2 AvZ|

L

Terms above second order have been neglected since we are investigating a small neighborhood qf'the cruise
point. Expression (26) represents Kup if the quantity under the absolute value sign is positive and Ky, if
it is negative.

Since the cruise point at AT =0 and aV = 0 gives the undefined value of 0/0 for Eq. (26), it is
necessary to evaluate the limit as AT and aV approach zero. If the limit exists, it must be 1ndependent of
the direction from which the cruise point is approached. To compute the 1imit and investigate the neighborhood
of the cruise point, a polar coordinate system centered at the cruise point is used to define control pertur-
bations. Let aR and g define control perturbations AT and aV as follows:

AT = (Dv + 8)av (27)
AR AR(B + D)

oV = Y1+ (s~ Dv)2 s aT = V 1+ (8 + Dv)2 (28)

The parameter g defines a direction relative to the reference direction of the line aT = D, aV. The
reference direction 8 = 0 is excluded from the control space since it is along the direction of the locus of
T =10 at the cruise point.

After substituting Eqs. (28) into {26) and taking the limit of the resulting expressions as 4R - 0, one
obtains for any g # 0:

K = WV ) (Ser + TS , K ] = (-WV ) S + TS ) (29)
“p]limit c ( FC c FCT) dn]yimit c ( FC CTFCy

The limit is thus well defined since it is independent of the approach direction in each region. However, it
remains to be shown that the limit value is in fact the minimum of Eq. (26) with respect to the perturbation
controls. This question is investigated for two cases, one for which Sgc 1is independent, and the other,
dependent on thrust.

shoy
to ¢
forr
Eqgs.

whe)
dept

pos’
depe
as’

pos’
quat
not

nume
witl

as

Fig
the:
Ham-
clir
poir

cru’
opt

asst
by

Cast

of -
by
asst

whe!

casi
plo
fan
sin
typ
is

app
of .
cou’

Thes
fah



i and
1d be

are

(26)

e
dn if

lent of
orhood
‘tur-

(27)
(28)
:us of
one
(29)

, it
ion

9.7

Case (A): SFC Independent of Thrust

Along the direction defined by AV = 0, i.e., along the thrust direction, Eq. (23) can be used directly
to determine the dependence of the functions on Typ and Tdn under the minimization operator. Since at
Vo=V, DIV.E) = T. = (A/SFC)VC, €q. (23) reduces to

Kup = (WV)Sge o Ky = (N/V)Sge (30)

showing that, at the cruise speed V¢, these functions are independent of thrust. This result is not restricted
to small perturbations relative to the cruise thrust. Along other directions, the truncated Taylor series

form &Eq. (26)) must be used. After setting the zero all thrust-dependent derivatives and substituting

Eqs. (28) into (26}, the following expression is obtained.

25 (8] +D.) + TS >AR ]
( ch v Cc FCVZ

31 +
K ———
up WSgc 2(8|Sgc Y1+ (8+ D,)? (31
oF = W+ av) )
Kan ¢ 0,2 &R

1 -

2181Y1+ (8 + D)

where the positive sign applies to K,p and the negative sign to Ky,. The characteristics of these functions
depend on the drag and specific fuel consumption derivatives. The drag derivatives Dy and sz are both

positive since the aircraft will certainly operate on the "front" side of the thrust-required curve. The
dependence of Spc on speed for a typical, currently in-service turbofan engine at cruise energies exhibits
a slight upward curvature above Mach 0.4 (as shown in Fig. 7), implying that both SFCV and Schz are

positive in the range of interest between Mach 0.4 and 0.9. The slight curvature of Spc indicates that a
quadratic function can accurately model the Mach number dependence of Sgg in the Mach range of interest and
not just in a small neighborhood of the expansion point. Also, at typical cruise conditions, one finds that
0,2 > (ZSFCVDv + TcsFCvz)' Therefore, for any B8, the denominator of Eq. (31) goes to zero before the

numerator does as AR s increased from an initial value of zero. Moreover, the slope of the operand function
with respect to aR increases as B8 + 0. The effect of AV can be neglected since V¢ >> aV.

These observations lead to the conclusion that the functions in Eq. (31) slope upward in all directions
as AR increases, except in the direction parallel to the thrust axis, along which the slope is level.
Figure 8 shows a family of plots of the operand functions as 8 varies over its range. The limiting values of
these functions at the cruise point (#W/V.)Sgc are therefore also the global minimums, and the value of the
Hamiltonian, which is the sum of the two components, is zero. At the cruise energy, furthermore, the optimum
climb and descent speeds are equal to the optimum cruise speed. The optimum climb and descent thrusts at that
point are arbitrary since the Hamiltonian is independent of them.

By applying these results to Eq. (20), it now follows that the structure of the optimum trajectories near
cruise is given by the family of trajectories in Fig. 4. Specifically, no cruise segment occurs except at
optimum cruise energy ECopt‘

By combining results from this and the preceding section, the important result follows that, for the
assumed engine model, optimum trajectories, corresponding optimum controls, and performance are not affected
by constraining the thrust to extreme values in the climb and descent segments.

Case (B): See Thrust-Dependent

A complete investigation of the neighborhood of the cruise point analogous to Case (A) requires estimates
of the various thrust-dependent derivatives in Eq. (26). However, understanding of this case can be obtained
by examining the functions in Eq. (26) only along the thrust direction, i.e., for aV = 0. Under that
assumption, Eq. (26) simplifies to:

K
u

p
Kor‘ = (NSFC/Vc [11 + (TCSFCT/SFé) + (IATI/ZSFC)(ZSFCT + TCSFCT;)] (32)
dn

where the plus sign and AT > 0 are chosen for Kyp and the negative sign and AT <0 for Kdn-

This simplified approach focuses attention on the derivatives SFCT and SFCTZs which are crucial for this

case. The characteristics of these derivatives can be deduced from plots of Sg¢ vs thrust (Fig. 9). These
plots, and those in Fig. 7, were derived from the operating instructions manual of a typical in-service turbo-
fan (Ref. 6). Obviously, the assumption of a thrust-independent Spc is grossly violated for this engine
since, at low thrust values, the Sgc curves approach infinity; i.e., they become undefined. However, at
typical climb or cruise thrusts, corresponding to the upper half of the thrust range, the variation in Sgc

is only about 5%.

Fuel flow is also plotted in Fig. 9. The dashed line through the origin gives the best constant SfC
approximation to the fuel flow function. Comparison indicates an excellent match at high thrust, but an error
of as much as 1200 1b/hr (550 kg/hr) at Tow thrust. For some applications the assumption of a constant Sgg
could be adequate if fuel flow errors at very low or idle thrust settings can be tolerated.

For the upper two thirds of the thrust range, quadratic functions provide good fits to the SfC curves.
Therefore, one can use the second-order Taylor series expansion at the cruise point to estimate Sg¢ for
fairly large deviations of thrust from cruise thrust. -
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The thrust in climb or cruise is typically larger than the thrust at which S i ini i
FC is a minimum in Fig. 9.
Both SFCT and SFCTZ will therefore be greater than zero and so will the coefficiegt of AT in Eq. (322.

It follows that the slope of Eq. (32) as a function of A: is greater than zero for K and 1

for Kdn. In other words, along the thrust direction these fungtions have a strong min?gum at tﬁ:sc:z?gezero
point whereas in Case (A) they were level along this direction. Along other directions, the investigation of
Case (A) has shown a positive slope. Thus, if thrust is an unconstrained control variable along with air-
speed, so that the cruise point lies in the interior of the control region, then the optimum c¢limb and descent
thrus?s and airspeeds will converge toward the optimum cruise thrust and airspeed as the climb and descent
energies approach the cruise energy. It should be noted that this holds for all cruise energies, including
those less than the optimum cruise energy, Ecopt' Since the Hamiltonian is again zero at the cruise energy,

it follows that the structure of the optimum trajectories as a function of range is identical to that of

Case (A) and is illustrated by Fig. 4. Computer calculations for this -case in Ref. 1, using a similar engine
mo@e], showed that the thrust is either maximum or idle for about three-fourths of the energy range between
initial and cruise energies and then departs from the extremum values so as to converge smoothly to the value
at cruise as cruise energy is approached.

Consider now the case where thrust is constrained to some maximum in climb and is idle in descent. In
that case, the minimum at the cruise point is not accessible since it does not lie in the region of permissible
controls. Also, unlike Case (A), the thrust dependence of Kyp and K4, in Eq. (23) does not disappear along
the thrust direction at V = V.. Therefore, it is unlikely that at the minimum the sum of the two terms will
be zero. The Hamiltonian is, in fact, greater than zero at any cruise energy. In order to show this, note in
Fig. 9 that, as thrust decreases, Spc increases without bound. It follows that Ig4n, will be less negative
than it would be if Spc were thrust-independent and therefore will be insufficient to cancel Iyp at cruise
energy, resulting in a positive value for the Hamiltonian. This was shown earlier to give rise to nonzero
cruise segments below the optimum cruise energy. Thus, the structure of the optimum trajectories for the
constrained thrust case is given by the family of trajectories in Fig. 3.

COMPUTER IMPLEMENTATION
(a) Algorithm Description
The climb and descent profiles are generated by integrating the state equation (10) from the initial

energy Ej to the maximum or cruise energy Ec. For this purpose, Eq. (10) is separated into its climb and
descent components, which are then modified to include the effect of nonzero flightpath angles as follows:

vV _+V )cos Y /E
( up wup up (33)

dxg, /dE = (vdn + vwdn)cos de/lEl

dxup/dE

Flightpath angles are not defined within the reduced dynamics of the energy state model. Nevertheless,

during the integration of the trajectory. the flightpath angles for climb and descent, Yyp and Ydn, can be
computed by using increments of altitude and distance from two successive energy points. ?he use of these
gomputed flightpath angles in Eq. (33) slightly increases the accuracy of the climb and descent distance
ntegrations.

At each energy in the integration the optimum airspeeds and thrust settings are obtained as the values
that minimize the two components of the Hamiltonian in Eq. (19). The minimization of the Hamiltonian is
carried out by the Fibonacci search technique (Ref. 7). It has the advantage of using the least number of
function evaluations of all known search techniques to locate the minimum with prescribed accuracy and also is
well suited to handle tabular data. Fibonacci search is basically a one-variable minimization procedure. It
is adapted here to two variables by applying the technique to one variable at a time while holding the other
variable fixed. Convergence to the minimum is achieved by cycling between the two variable several times.
Prior to a search over a given control variable, the limits of the regions for Kyp and Kgn, which consist
of the T =D Jlocus and the dashed line with shaded border in Fig. 6, are computed to keep the search inter-
val as small as possible.

As previously explained, the choice of A 1in the Hamiltonian determines the range of the trajectory,
but the exact functional dependence between A and range cannot be determined explicitly for the various
weights, wind profiles, and other parameter changes encountered in real time operation. An iterative
procedure is therefore used and is explained in part (b) of this section.

An important part of the algorithm involves accounting for the weight change due to fuel burn. The effect
on the optimum trajectory of the change in weight was not included explicitly in the theory for reasons
previously stated. Two methods are used to correct the optimum trajectories for the weight change. The first
merely integrates the fuel flow and updates the weight in the calculation of £ during climb and descent.

This ensures that updated values of aircraft weight are used in the integration of Eqs. {33) to generate the
climb and descent trajectories.

The second method modifies the value of A used in the Hamiltonian. This modification involves using
the estimated weight of the aircraft at the end of climb, i.e., at energy E., to compute the value of )
rather than the weight at takeoff. It is important to use the weight at E. rather than the weight at some
other energy, to compute A because the sensitivity of the optimum controls to changes in X increases as
the aircraft energy approaches Ec. The fuel consumption for the entire climb trajectory, Fyp, is estimated
at the start of climb from the empirical relation:

Fup - Kl(Ec - E1')w1‘/wref (34)
where K, is an aircraft-dependent constant and MW.of s a typical initial climb weight. This relation
estimates the climb fuel weight to about 10% accuracy, which is adequate for this purpose. Similarly, the
weight at the end of cruise, if a cruise segment is present, is used to compute A for the descent optimiza-
tion. The cruise fuel consumption, F., is determined from the relation:
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: 9. Fc = wdc/Vg (35)

zero where W is the average fuel flow rate and Vg the average ground speed during cruise. The calculation
of the average quantities is described in Ref."8.

n of

- The computer implementation includes both the free and constrained thrust cases. For the constrained

scent thrust case, the cruise distance is computed from Eq. (20). However, because dAr/dE ~ 0 as Ec » ECopt' there

;g is a practical 1imit to the use of Eq. (20), determined by the numerical accuracy of computing dia/dE for

gy Ec in the neighborhood of ECopt‘ A practical 1imit for Ec is that value for which i = 1.01Aopt. The
total range of the trajectory obtained for this value of i is referred to as dpax. A1l trajectories

gine requiring longer ranges than dpax are assumed to cruise at ECopt and contain cruise segments of length

en dc = df - dyp - ddn, where dyp and dgn are computed for A = 1.01xgpt. In the free thrust case, numerical

alue d?fficulties can arise in min*mizing Eq. (19) as E; » Ecopt‘ The value of 1.01xgpt has also been found to
serve as a practical criterion for computing the longest range without a cruise segment at Ecopt

In

isible (b) Simplified Flow Chart

long

1111 A computer program of the algorithm has been implemented in FORTRAN IV and is described in detail in

Fe in Ref. 8. The program contains one main program and 38 subroutines. There are approximately 2400 FORTRAN

tve instructions in the program. In this paper, the organization and major elements of the program are outlined

‘uise with reference to the simplified flow chart shown in Fig. 10.

)

After reading aircraft 1ift, drag, and propulsion data, performance function parameters, and wind and
temperature data, the optimum cruise speeds and costs and dia/dE are computed for a range of cruise energies
and cruise weights using Eq. (17). Cruise weight is incremented in steps of about 5% of average gross weight.
Cruise energy is incremented in 1000-ft steps fron 5000 energy-feet to the maximum or ceiling energy. The
results are stored in what is referred to as cruise performance tables. At each weight the cruise performance
vs energy will show a dependence as in Fig. 2. The tables also contain a variety of other quantities such as
fuel flow, thrust setting, Mach number, etc., that are needed to fly the trajectories. In addition, at each
weight the optimum cruise energy Ecopt and the optimum cruise cost Agpt are computed and stored in

fnd separate tables. Since these tables contain extensive amounts of data and are time consuming to compute,

' they can be permanently saved on a mass storage medium.

33) After reading in additional input data, two optimum trajectories referred to as the minimum and maximum

' range trajectories are synthesized. The minimum range trajectory is obtained by choosing the largest value
of A (called Amax) stored in the cruise performance tables at the gross weight of interest. The maximum
range trajectory is obtained by choosing the smallest X, namely, ]-O]Xopt’ as explained in part (2). Values
of A at given weights are computed by interpolating between data points in the cruise tables. The corre-

e sponding ranges dpysx and dpin can now be compared with df to decide on the type of trajectory required.

3 If df > dpyaxs the trajectory will always contain a segment of cruise at optimum cruise energy ECopt‘ No
iteration on X s required in this case since the specified range df is obtained by choosing a cruise
segment of length d¢ = df - dyp - dgn. The optimum altitude and Mach number in the cruise segment are updated
every 100 n. mi. to account for the loss of weigh: due to fuel burn. This is the well-known climb-cruise

'S technique.

?o is If dpin < df < dpax» the maximum energy will fall below Ec°pt and iteration with respect to A is

' It required. Here the approximately known inverse relationship between A and df, illustrated in Fig. 11 for

er a Boeing 727-100, is incorporated in heuristic to minimize the iteration. Thus, the first estimate of
A is computed from

er- x = (A/dg) + B (36)

The constants A and B are chosen to yield Apay and 1.01xgpt when df is set to dpip and dyax.,
respectively. Then the trajectory is synthesized to yield the actual range d. If d 1is not sufficiently
close to dg, constants A and B are updated by using a pair of ranges and the corresponding pair of
A's computed in preceding syntheses. The ranges included in this pair are selected so they enclose the
desired range and lie closest to it. A new estimate of i is now computed and the synthesis is repeated.
Typically, after two iterations the actual range will have converged to within 5 n. mi. of the specific range

Hffect and iteration is terminated.

irst The optimum climb and descent trajectory is specified by storing the range, time, fuel, Mach number,

he thrust setting, and altitude as a function of energy height in 500 energy-feet increments.

The computer implementation of the algorithm described here was designed for off-line use primarily as
a benchmark for evaluating various non- or suboptimum trajectories. Various simplifications are possible to

g reduce the computer complexity for onboard implementation. For example, the iteration loop to achieye a
specified range need not be mechanized. This approach was used in a piloted simulation of the algorithm

’Ee (Ref. 9). In that study, the pilot played an active part in closing the loop on range.

1

ed RESULTS

34) The computer-implemented version of this algorithm was used to compute and to study the characteristics
of several types of optimum trajectories. This section presents a summary of the results. A more complete
discussion, including the effects of winds, nonstandard temperatures, and gross weight changes, can be found

3 in Ref. 8. The aerodynamic and propulsion models used in these calculations are representatives of the

iza- Boeing 727-100 aircraft equipped with JT8D-7A engines. The time and fuel cost parameters in the performance

function Eq. (7) were chosen to be $500/hr and 6.23 cents/1b, respectively. Inflation has increased these
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parameters since their selection in early 1978. However, because the trajectories actually depend only

on the ratio of the parameters, the trajectories continue to be useful, es i i ini
A S » especially for comparing minimum

Figure 10(a) shows the altitude vs range for 100, 200, and 1000 n. mi. range minimum DOC trajectories.

The aircraft takeoff weight for these trajectories is 150,000 1b. Winds are assumed to be zero and atmospheric

conditions are for a §tandard‘day. For the 200-n. mi. range, both the constrained thrust {solid line) and the
free thrust (dashed line) trajectories are shown. Also, for the 200-n.mi. range, Fig. 10(b) shows the
corresponding altitude vs airspeed profiles.

Below 10,000 ft altitude, all trajectories are essentially identical in both climb and descent profiles
At 10,000 ft both the climb and descent profiles are interrupted by short segments of almost level f?ight. ’
These are the result of the 250 KIAS speed limit imposed on the trajectory below 10,000 ft by U.S. air traffic
control rules. Thus, when the aircraft reaches 10,000 ft in climb, the aircraft accelerates to the

u?gggsgrained optimum climb speed (see Fig. 12(b)). Similarly, a deceleration occurs in descent at this
altitude.

The cons;rained thrust trajectories for the 100- and Z00-n. mi. ranges contain short cruise segments
below the optimum cruise altitude of 31,000 ft. Optimal cruise altitude is used for ranges longer than about
250 n. mi. For the relatively long range flight of 1000 n. mi., the optimum cruise altitude increases at a
rate of approximately 2.5 ft/n. mi. of cruise distance due to fuel burnoff.

The free thrust trajectory for the 200-n. mi. range dces not contain a cruise segment. However, the
difference between the constrained and free thrust profiles is slight and is noticeable only above 25,000 ft.
Below this altitude the optimum thrust values are identical for both types, namely, maximum in climb and
idle in descent. Above this altitude the thrust reduces gradually in climb for the free thrust case; it
continues to reduce during the initial descent and reaches idle thrust at 20,000 ft. Differences in the
speed profiles also are noticeable only above about 24,000 ft. As expected, the difference in operating costs
between the two types of trajectories is slight, amounting to an additional $8 saving for the 200-n. mi. free
thrust trajectory.

Minimum fuel trajectories, obtained by setting the time cost parameter in the performance function to
zero, are shown in Fig. 13. In comparison with the minimum DOC trajectories, the minimum fuel trajectories
for a given range climb to a higher altitude and use a substantially lower airspeed above 10,000 ft. Also,
above 10,000 ft the flight-path angle of the minimum fuel trajectories is steeper in climb and shallower in
descent. As before, differences in the altitude profiles between the constrained and unconstrained thrust
trajectories are apparent only near the top of the climb. The penalty in fuel consumption due to the 250 KIAS
speed restriction below 10,000 ft was found to be 66 1b. This penalty increases with an increase in gross
weight but is essentially independent of range.

Table 1 summarizes several important numerical values for the trajectories calculated. Comparison of
tabulated figures shows that the fuel saved by flying the minimum fuel instead of the minimum DOC trajectory
is about 1,000 1b for the 1,000-n. mi. range, or about 1 1b/n. mi. However, the associated time and cost
penalties are 16 min and $80, respectively. If the price of fuel continues to increase more rapidly than the
cost of time, as was the case in 1979, the optimum DOC and fuel trajectories will converge, resulting in
smaller fuel and cost differences between them.

For the 200-n. mi.-range minimum fuel trajectories, the differences in fuel consumption between the
constrained and free thrust cases is 23 1b. This relatively small difference would seem to justify the use
of the simpler-to-mechanize and computationally faster constrained thrust mode, especially in an onboard
computer implementation. However, as was pointed out in the preceding theory sections, this difference is
aircraft- and propulsion-model dependent and therefore should be checked whenever there is a change in model
characteristics.

CONCLUSIONS

The approach presented here has established the structure of optimum trajectories for airline operations
and has yielded an efficient computer algorithm for calculating them. The algorithm can be incorporated in an
airline flight planning system or can be used to determine the performance penalty of simplified onboard
algorithms. The latter application is important at this time in view of the current effort by industry to
develop onboard performance management systems.

Two pairs of opposing assumptions, constrained vs free thrust and dependence vs independence of specific

fuel consumption on thrust, played pivotal roles in determining the characteristics of the optimum trajectories.

If the assumption of specific fuel consumption independent of thrust is justified, constrained thrust
trajectories are identical in structure and performance to free thrust trajectories. However, when the
realistic dependence of specific fuel consumption on thrust is taken into account, there will be a difference,
though slight for the exampie studied, in both performance and structure between constrained and free thrust
cases. The actual differences in performance depend on the propulsion and aerodynamic models as well as other
factors and must be determined for each aircraft model by computer calculation.

APPENDIX

It is to be proved that the loci of W¢ - AV = 0 and T - D = 0 are tangent at the cruise point, assuming
that the cruise point at T = T., V = V¢ is a minimum of the cruise cost Wg/V along the locus T - D= 0.
This 1s equivalent to proving that the cruise point lies on both loci and that the slopes of the loci are
identical at that point.
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That the cruise point satisfies Wf - AV = Q0 follows from the sequence of relations below:
(We - AV)]T=T =W\y— - e Va\v . A= Va-a)=0
Cc C [+
V=vc \I=Vc V=Vc
To prove that the slopes are identical, compute the gradient of Wf - AV:

- : Sec
V(Hg - aV) = [%SFC - "V‘f] + 3 TSee. + Sec (A1)
v =1 T

V=Vc V=Vc

The perpendicular unit vectors i and i point in the speed and thrust directions, respectively. Now

write A as a function of the perturbation aV:

A= [(TC + Dv AV)SFC(Tc +D, av, V. + AV)]/(Vc + aV) (A2)

Since, by assumption, 1 has a minimum at V = V., set the derivative of i with respect to AV equal to
zero. This yields the following relation:

= BySec Tc(%FCTDv ¥ Srcv> = TeSec/Ve (A3)
Next compute the gradient of (T - D)(V/W) at the cruise point:
uT - o)(v/w)]T=Tc = (VWD) + 5] (A4)
V=Vc

The slope of Eq. (A1) relative to the i direction is given by
TS + S
("c Fe, * Src)

TcSFCv b (TcSFC/Vcﬂ

(A5)

Slope = [

After substituting Eq. (A3) in place of T.Spc/Vc in Eq. (A5), the slope simplifies to -1/Dy, which is
identical to the slope of Eq. (A4).
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TABLE 1. CHARACTERISTICS OF EXAMPLE OPTIMUM TRAJECTORIES

i L
Thrust Range, Time, Cost, Fuel, Cruise Climb Descent : x
mode n. mi. hr/min/sec $/n. mi. 1b/n. mi. Altitude/ft Distance/n. mi. Distance/n. mi ,
Minimum Direct Operating Cost Trajectories (150,000 1b Takeoff weight) : i S,
N \
cT¢ 100 20:06 3.58 30.405 14899 43.15 52.66 -
t
cT 200 33:02 3.00 25.774 26970 101.42 77.85
- =S¢
FTb 200 33:00 2.98 25.33 27827 116.00 84.00 D
cT 1000 2:13:07 2.28 18.779 30819 135.76 85.38
Minimum Fuel Trajectories (150,000 1b Takeoff weight)
F
cT 100 21:26 3.60 29.247 17531 37.73 54.12
CcT 200 37:03 3.07 24.38 27226 80.06 83.21
FT 200 37:06 3.06 24.268 2801 101.93 98.07
T 1000 2:29:14 2.36 17.763 33185 121.07 103.51
7
a : 1
CT = Constrained thrust.
bFT = Free thrust.
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START
SYNTHESIS
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AS FUNCTION OF Ec AND W

READ INITIAL WEIGHT W;; DESIRED RANGE dg AND
INITIAL AND FINAL ALTITUDES AND AIRSPEEDS;
SPECIFY CONSTRAINED OR FREE THRUST MODE

{

COMPUTE My ax. MopT: SYNTHESIZE MIN. RANGE

AND MAX. RANGE TRAJ:
IminPmax) dmax{1-012gpt)

RAANGE TOO SHORT:
NO TRAJECTORY
1S COMPUTED
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SYNTHESIZE TRAJECTORY FOR ESTIMATED
A TO OBTAIN ACTUAL DISTANCE ¢
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OF X\ BASED
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** NO TRAJECTORY SYNTHESIZED

Fig. 10. Flow chart for comnputer algorithm.
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Fig. 12. Minimum DOC trajectories.
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Fig. 13. Minimum fuel trajectories.




